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ABSTRACT
Inkjet printing technologies have been common and well

developed over the past few decades, and more recently have
gained significant acceptance in functional printing and addi-
tive manufacturing applications. Control of dot gain in the de-
position process is a desirable capability for a printing system
from the perspective of process control and throughput, and pre-
liminary data suggests dot gain and drop volume can be con-
trolled in inkjet systems through manipulation of the reservoir
back pressure. In order to help facilitate further exploration, the
design of a back pressure control system is proposed, and the sys-
tem modeled, with linear and nonlinear control designs proposed
and compared in simulation for this nonlinear plant application,
where the nonlinear control design, a sliding mode controller,
outperforms the tested linear control design.

NOMENCLATURE
A Syringe surface area, m2

Vp Piping volume, m3

Vs Syringe volume, m3

Vt Total reservoir volume, m3

PR Reservoir (absolute) pressure, Pa
PA Ambient pressure, Pa
Pb Back pressure, Pa
x Syringe deflection from initial position, m
x0 Initial syringe position, m
Vt,initial Total reservoir volume at x = 0, m3

PR,initial Initial reservoir pressure, Pa
n Number of moles of gas (air), mol
R Ideal gas constant, J/(K*mol)
T Air temperature, K
Kg Gas right-hand side constant, N*m
Fs Syringe nonlinear spring force, N
Ff Syringe friction force, N
Fc Coulomb friction force, N
Fe ”External force” for friction model, N
Fv Voice coil actuator force, N
Fk Voice coil spring return force, N
c Syringe viscous damping coefficient, N/(m/s)
Kc Voice coil return spring constant, N/m
ms Syringe plunger mass, kg
ma Voice coil armature mass, kg
mt Total mass, kg
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U Amplifier voltage, V
L Voice coil inductance, H
r Voice coil resistance, Ω

Vbem f Back-emf voltage, V
K f Voice coil force constant, N/A
Kb Voice coil back-emf constant, V/(m/s)
ca Viscous damping coefficient for actuator, N/(m/s)

INTRODUCTION
Inkjet systems are a very common class of drop-on-demand

(DOD) printing system that are used for ink delivery in everyday
consumer printers and are produced by a number of manufactur-
ers, such as the Seiko Epson Corporation, Canon Inc. and the
Hewlett-Packard Company. There are multiple types of inkjet
technology, and the most commonly used are piezoelectric inkjet
and thermal inkjet technologies.

In thermal inkjet (TIJ) systems, the print head is comprised
of an array of nozzles, generally produced through lithographic
micro-fabrication processes [1]. The systems integrate reser-
voirs of ink or other fluid behind the nozzles and eject drops on
demand by pulsing resistive heating elements that are adjacent
to the reservoirs with a short, intense voltage waveform. The
Ohmic heating of the resistive element quickly vaporizes a small
amount of the fluid and creates sufficient pressure for a drop of
ink to be ejected from the nozzle. In piezoelectric inkjet systems,
drops are ejected by utilizing a piezoelectric transducer arranged
with a nozzle that is actuated in order to produce a tuned pressure
wave through the fluid, ejecting a drop.

An important parameter in both types of process is the back
pressure, or reservoir pressure, of the nozzle system. This range
depends on the nozzle, and manufacturers choose a value in the
range depending on fluid jettability [2] characteristics. The pres-
sure is below ambient pressure so that even low-viscosity, low-
surface tension fluids will stay in the correct area of the reservoir,
while if the pressure is too far below ambient pressure it may ef-
fect nozzle refill rates and therefore the firing rate of the nozzle.
However, it is well understood that for most fluid choices there is
a range of back pressure values that will allow jetting of droplets.

The back pressure may also have some additional ability
to effect dot gain, the size of the dots on the substrate formed
through inkjet deposition, through the complex mechanisms of
the inkjet process. Preliminary results for a 12-nozzle TIJ head
and one particular functional ink are shown in Figure 1. This
particular ink is a palladium hexadecanethiolate-based ink that
exemplifies the many applications of functional printing, as it has
applications in electronics fabrication and sensing application
through surface-enhanced Raman spectroscopy (SERS) [3, 4].
This material and others have some challenges involved with
depositing device-quality films and structures due to fluid prop-
erties [5]. While printing techniques have been developed to
improve performance, additional flexibility in dot gain without
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Figure 1. Drop volume vs. back-pressure for a 16-nozzle TIJ head.

having to change nozzles would be of value in such applications.
Other applications, such as bioprinting [6] and sensor function-
alization via inkjet [7,8], also stand to benefit from dot gain con-
trol, as dosing control could be improved significantly.

For this TIJ system the back pressure for the shared reservoir
for all 12 nozzles is held constant at some value that is generally
in the range of 800 Pa to 10 kPa below the ambient atmospheric
pressure, and a trend correlating the back pressure and drop vol-
ume is evident. The methodology of this experiment is explained
in [9].

Significant work has been done modulating dot gain by
waveform design in piezoelectric inkjet devices [10]. This work
has been continued and well studied in multiple types of piezo-
electric inkjet heads [11], and has even been implemented in
commercial devices [12].

However, dot gain has not been controlled online in printing
systems via back pressure, to best of the authors’ knowledge, in
TIJ or piezoelectric systems. This would allow additional flexi-
bility to print control designers. In order to study this behavior
and implement back pressure-modulated control of dot gain, it
is desired to build a low cost back pressure control system that
can vary back pressure in synchronization with an experimental
inkjet printing system. The contribution of this paper is design
of a robust model-based control strategy for controlling the back
pressure in a syringe-based pressure control system.

SYSTEM DESCRIPTION AND MODEL DEVELOPMENT
The system that will be built to be controlled is shown in

a diagrammatic form in Figure 2. The Linear Force Actuator is
specified as a Motran Industries axial force transducer (model
AFX70NS) rated at 70 Newtons of DC force, and 15 N/A force
constant. Other important specifications from a modeling per-
spective are taken from the data sheet and presented in Table 1.
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Figure 2. Schematic representation of control system.

A 3 mL Luer-lock syringe is used as the syringe portion.
The system in a schematic form can be modeled as in Figure

2. There are two main components to the dynamical behavior -
the syringe dynamics and the actuator dynamics. The behavior
will be derived separately, coupled through a force term, Fv that
will appear on both free-body diagrams.

Syringe Behavior The free-body diagram (FBD) for the
syringe is shown in Figure 3(a). The important forces are Fs, a
nonlinear spring force due to the compression or expansion of the
air in the reservoir, Ff , the force due to friction (from the syringe
plunger in contact with the syringe walls, and Fv, the voice coil
actuator force.

We assume the plunger has some small mass, mp. Because
the relative magnitude of the back pressure is very small com-
pared to the ambient pressure, the piping is unlikely to deform
significantly. For this reason, in the model the piping volume Vp
is constant, and the total volume of the reservoir will be Vp +Vs,
where Vs is the volume of the air in the syringe. This is a state
dependent volume (on the position, x, offset by the initial syringe
position x0) and thus the total air volume can be written as:

Vt =Vp +Vs =Vp +A(x+ x0) (1)

where A is the syringe plunger surface area. We know the ideal
gas law to be:

PV = nRT = Kg =Vt,initialPR,initial (2)

In this case, n,R, and T are assumed constant, and therefore Kg is
a constant. Therefore we have a relationship so that the quantity

PR(x)Vt(x) = Kg =Vt,initialPR,initial (3)

x

Fs(x)

Fv

Ff

ms

(a) Free body diagram of the syringe plunger.

mc
cẋ

Fv Kf i

x

Kcx

(b) Free-body diagram of actuator.

Figure 3. System free body diagrams.

with Vt,initial =Vp +Ax0. Substituting, we can find that:

PR(x) =
Kg

Vt(x)
=

(Vp +Ax0)PR,initial

Vp +A(x+ x0)
=

(Vp +Ax0)PA

Vp +A(x+ x0)
(4)

because PR,initial = PA by design. The back pressure, Pb(x) =
PA−PR(x) and so

Pb(x) = PA−
(Vp+Ax0)PA
Vp+A(x+x0)

=
PA(Vp+A(x+x0)−PA(Vp+Ax0)

Vp+A(x+x0)
(5)

=− PAAx
Vp+A(x+x0)

(6)

Equation 6 is the back pressure as a function of the position x.
The backpressure will be the system output y in the state-space
representation of the system. Using the back pressure Pb, we can
write the nonlinear spring-like force due to the compression or
expansion of the air in the reservoir by just multiplying by the
area of the syringe:

Fs(x) = Pb(x)A =− PAA2x
Vp +A(x+ x0)

(7)

The back-pressure Pb(x) (Equation 6) and spring-like force Fs(x)
(Equation 7) as a function of the state x are illustrated in Figure
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Student Version of MATLABFigure 4. Nonlinear spring-like effect due to back pressure and back
pressure vs. deflection with varying initial positions x0 and assuming a
typical 3 mL syringe and Vp of 1.5E-6 m3.

4. It is clear from the figure that the back pressure is a nonlinear
function of the position, and that the spring-like force is also a
nonlinear effect. The friction force Ff is modeled as a Coulomb
friction force with viscous damping - that is:

Ff (ẋ,Fe) =

{
Fe ẋ = 0, |Fe|< Fc
Fc sgn(Fe)+ cẋ |ẋ|> 0 (8)

Here, Fe is an external force equal to the sum of all other forces
on the syringe, which can be written as:

Fe = Fv +Fs(x) (9)

Finally, we can find that the sum of all forces for the syringe
allow the dynamic relationship:

msẍ = Fv +Fs(x)−Ff (10)

Actuator Behavior
The voice coil dynamics are very similar to those of a DC

electric motor except for two differences - one, the motion occurs
in a linear manner rather than rotational, and secondly, the actu-
ator utilized here has a significant center-return spring force. We
assume that the actuator shaft and the syringe shaft are rigidly
connected and so the displacement of the actuator can also be
taken to be x, and that this is the deviation from the center posi-
tion of the voice coil. A free body diagram of the actuator rigid
body is shown in Figure 3(b).

The input to the system is given as the amplifier output volt-
age, U . After application of Kirchoff’s voltage law, it is found
that the actuator is governed here by two equations:

mcẍ+ caẋ = K f i−Fv−Kcx (11)
Li̇+Ri =U−Kbẋ (12)

L is the coil inductance, R is the coil resistance, and Kb is the
back-emf constant.

Overall System Model
Combining the syringe behavior from Eqns. 10 and 8 with

the actuator behavior from Eqns. 12 and 11, the system behavior
can be written as:

(ms +mc)ẍ = K f i− caẋ−Kcx+Fs(x)−Ff (13)
Li̇ =U−Kbẋ−Ri (14)

We will select the states x1,x2,x3 to be x, ẋ, and i, respectively,
with input U and output y = Pb(x), as defined before, and so the
system can be written in a (non-linear) state-space representa-
tion:

 ẋ1
ẋ2
ẋ3

=

 0 1 0
− Kc

ms+mc
− ca

ms+mc

K f
ms+mc

0 −Kb
L −R

L


 x1

x2
x3

+
 0

Fs(x1)−Ff (x2,Fe)
ms+mc

U
L


(15)

Where,

Ff (x2,Fe) =

{
Fe x2 = 0, |Fe|< Fc
Fc sgn(Fe)+ cx2 |x2|> 0

Fe = Fv +Fs(x1)

Fv =
ms

ms +mc
(K f x3− cax2−Kcx1)−

mc

ms +mc
(Fs)
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The system therefore contains a static output nonlinearity. For
the purposes of this implementation, because the output nonlin-
earity is invertible over the operating range in the system model,
the nonlinearity is used as a lookup relationship. For a given de-
sired pressure, the required position state x1 can be computed,
and control applied on the position state.

Equilibria
The equilibria of the open loop (no input, homogenous) sys-

tem can be found by setting ẋ1, ẋ2, ẋ3 = 0. If this is done then
certainly equilibrium can only exist when x2,x3 = 0. The condi-
tions on x1 are due to the spring-like forces and also static fric-
tion, and they produce a range of x1 that satisfies the equilibrium
conditions. The range of x1 is:

M−
√
−4AKc(−FcVp−AFcx0 +(−M)2)

2AKc

≤ x1 ≤

M+
√
−4AKc(−FcVp−AFcx0 +(−M)2)

2AKc

(16)

where M = AFc−A2PA−KcVp−AKcx0.
Given no input, the system will have an equilibrium in the

range given in Eqn 16. In addition, intuitively the system is stable
in its autonomous form, as the forces present are all attractive
towards the equilibrium calculated above.

System Parameters
the following values are used for the system parameters

based on design and actuator estimates.

Linear Control Design
Linear control design will be attempted by linearizing about

one of the given equilibria. For simplicity we pick x1 = 0, and
set Ff = 0. Then, we can differentiate the Fs(x1) into:

Fs(x1) =−A
PAAx

Vp +A(x+ x0)
(17)

d
dx1

Fs(x1)|xe
1=0 =

A3PAxe
1

(Vp +A(xe
1 + x0))2 −

A2PA

Vp +A(xe
1 + x0)

=− A2PA

Vp +Ax0

(18)

Table 1. Parameters Used in Control Design and Simulation

Parameter Units Value

A m2 5.8901E-5

Vp m3 1.5E-6

PA Pa 101000

x0 m 0.015

Fc N 2

c N/(m/s) 0.01

Kc N/m 2200

ms kg 0.01

mc kg 0.44

mt kg 0.45

U V −10 <U < 10 (saturation)

L H 0.003

R Ω 2.5

K f N/A 15

Kb V/(m/s) 15

ca N/(m/s) 0.01

the results of this is the coefficient of the first term of the Taylor
series about zero for Fs, allowing us to write that

Fs(x1)≈−
A2PA

Vp +Ax0
x1 (19)

Full State Feedback Control
This allows us to construct the linear system in Equation 20.

 ẋ1
ẋ2
ẋ3

=

 0 1 0
−( Kc

mT
+ A2PA

Vp+Ax0
) − ca

mT

K f
mT

0 −Kb
L −

R
L


 x1

x2
x3

+
 0

0
1
L

U (20)

The output is still the nonlinear mapping from x1 to Pb, however,
this is relatively easy to compute, and for the control design the
methodology will be to precompute the x1 that corresponds to
the desired setpoint in Pb. Therefore we can treat the output as
y = Cx with C = [1,0,0]. Given the nature of the sensing in
the current application, we assume full state feedback, and with
perfect measurements at this time. A gain matrix K is chosen
in the conventional pole-placement technique. Eigenvalues of
(A−BK) were chosen to be [-100+100i, -100-100i, -350].
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Integrator-Augmented Full State Feedback Control
We can also add an integrator to try to mitigate the steady-

state error that would be inevitable with simply implementing
full-state feedback control. The linear system is augmented to
be:


ẋ1
ẋ2
ẋ3
ẇ

=


0 1 0 0

−( Kc
mT

+ A2PA
Vp+Ax0

) − ca
mT

K f
mT

0

0 −Kb
L −

R
L 0

1 0 0 0




x1
x2
x3
w

+


0
0
1
L
0

U

(21)
A gain matrix K is chosen in the conventional pole-

placement technique. Eigenvalues of (A−BK) were chosen to
be [-100+100i, -100-100i, -300, -400].

Linear Control Performance Results
Performance results for the chosen designs are shown in Fig-

ure . When the linearized system is simulated with the chosen
control gains, the system performs well (the state feedback, lin-
ear simulation (SFL) case). However, when the state feedback
controller without augmentation is applied to the nonlinear sys-
tem, there is significant steady state error due to the static fric-
tion effect as well as the nonlinear spring effect. This is also why
the steady state error can actually overshoot the setpoint in the
cases when the system is traveling a farther distance, and why
the steady state error is not always the same percentage of the
setpoint as would be the case in a linear system with a constant
disturbance. This can be seen in the state feedback with nonlin-
ear plant (SFNL) case.

The integrator resolves the steady state error issue and the
performance is relatively good, as seen in the augmented state
feedback with linear plant (ASFL) case. However, in the aug-
mented state feedback with nonlinear plant case (ASFNL) it is
slower to converge than one would expect based on the linear
design simulation, and exhibits significant overshoot that would
not be predicted based on linear design methods. Tuning of the
pole locations could improve performance somewhat in overall
settling time, but rise time would be difficult to improve without
inducing more oscillatory behavior.

Nonlinear Control Design
In order to take advantage of our understanding of the non-

linear system (and not just treat the nonlinearities as disturbances
or uncertainties to a linear system) it is desirable to implement
a nonlinear control scheme to potentially improve performance
[13]. For certain classes of voice coil actuator, methods such
as sliding mode control (SMC) have been utilized in the past to
deal with nonlinear friction effects and improve tracking speed
and precision. In this system, the nonlinear spring effect also
can be addressed through a robust control method such as SMC,

0 0.02 0.04 0.06 0.08 0.10

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time, s

D
is

pl
ac

em
en

t, 
m

Linear Feedback Control Results 
With and Without Augmented State

 

 

SFL
SFNL
ASFL
ASFNL

Figure 5. Linear design performance results. SFL: state feedback, lin-
ear simulation. SFNL: state feedback, nonlinear simulation. ASFL: aug-
mented state feedback, linear simulation. ASFNL: augmented state feed-
back, nonlinear simulation.

without adding an integrator that could slow down response or
impact stability.

Sliding Mode Control
To make mathematical simplification more straightforward,

we will, without loss of generality and in complete equivalence,
absorb the viscous damping term from Ff into ca making a new
viscous damping term ĉ = ca + c. Ff changes to F̂f :

F̂f (ẋ,Fe) =

{
Fe ẋ = 0, |Fe|< Fc
Fc sgn(Fe) |ẋ|> 0 (22)

For simplification of notation, let us make the following notation
changes:

λ =−ĉ/mt

α =−Kc/mt

β = K f /mt

γ(x1) = Fs(x1)/mt

q =−F̂f /mt

p =−Kb/L

µ =−R/L
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The new state space equations, including these substitutions, be-
come:

ẋ1 = x2 (23)
ẋ2 = λx2 +αx1 +βx3 + γ(x1)+q (24)

ẋ3 = px2 +µx3 +U/L (25)

Following the method of [14] and [15] we would like to choose
a sliding function:

s = x2−gx3−hx1 (26)

We will select g and h later. We now would like to choose U such
that it drives the states to the sliding surface, s = 0. According
to Lyapunov stability theory, this can be accomplished if U is
selected such that sṡ = −ε|s| for ε > 0 and s 6= 0. Taking the
derivative of the sliding function and substituting,

ṡ = ẋ2−gẋ3−hẋ1 (27)
= (λ−gp−h)x2 +(β−gµ)x3 +αx1 + γ(x1)+q−gU/L (28)

If we choose

U =
L
g
((λ−gp−h)x2 +(β−gµ)x3 +αx1 +n+s)+

L
g

l+ sgn(s)

(29)
where n+ and l+ are positive constants, then,

ṡ =−l+ sgn(s)−n+s+ γ+q (30)

This implies that:

sṡ =−l+ssgn(s)−n+s2 + γs+qs (31)
≤−l+|s|+ |γs|+ |qs| (32)
≤−(l+−|γ|− |q|)|s| (33)

Noting that we know the bounds for γ of which the largest in
absolute value is γmax, and that we know that the maximum value
of q is given by Fc/mt = qmax, choosing

l+ = ε+
Fc

mt
+ γmax (34)

Will satisfy the requirement that was

sṡ≤−(l+−|−1
mt
||Fc− (γ(x1)|)|s|<−ε|s| (35)

We now have 3 remaining control variables to assign: n+, g, and
h. On the sliding surface, s = 0, and so,

x2−gx3−hx1 = 0→ x3 =
x2

g
− hx1

g
(36)

Therefore the state space system can be rewritten as second-
order:

ẋ1 = x2

ẋ2 = λx2 +αx1 +
β

g
x2−

h
g

βx1 + γ+q
(37)

This can then be rewritten as:

ẍ1 = (λ+
β

g
)ẋ1 +(α− hβ

g
)x1 + γ+q (38)

Taking the Laplace transform and rearranging,

S2X1(S)−
(

β

g
+λ

)
X1(S)−

(
α− hβ

g

)
X1(S)

= Sx1(0)+ ẋ1(0)−
(

λ+
β

g

)
x1(0)+L [γ+q]

(39)

where S is the Laplace variable. Solving for X1(S) yields:

X1(S) =
Sx1(0)+ ẋ1(0)−

(
β

g +λ

)
x1(0)

S2−
(

β

g +λ

)
S+
(

hβ

g −α

)
+

L [γ+q])

S2−
(

β

g +λ

)
S+
(

hβ

g −α

) (40)

Assume that the characteristic equation of Equation 40 has dou-
ble roots of−k < 0. Then the steady stated time domain solution
to Equation 40 can be bounded by:

|x1(∞)| ≤

b1e−kt +b2te−kt +

∣∣∣∣∫ ∞

0
(qmax + γmax)(t− τ)τe−kτdτ

∣∣∣∣
≤

∫
∞

0
|(qmax + γmax)(t− τ)|

∣∣∣τe−kτ

∣∣∣dτ

≤ |(qmax + γmax)|
∫

∞

0
τe−kτdτ

= |(qmax + γmax)|
(

τe−kτ

k
− e−kτ

k2

)∣∣∣∞
0

=
|(qmax + γmax)|

k2

(41)
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This steady state value is what we would like to eliminate and
therefore based on requirements and known values of qmax and
γmax we can select k. Once k is known, g and h can be chosen
due to the double root choice. Any n+ should result in eventually
reaching the sliding surface, though intuitively looking at Equa-
tion 27 the larger that n+ is, the faster the system should reach
the sliding surface. For simplicity we will also choose n+ = k.
From the characteristic equation:

S2−
(

β

g
+λ

)
S+
(

hβ

g
−α

)
= S2 +2kS+ k2 = 0 (42)

From this, clearly g =−β/(2k+λ) and h =−(k2+α)/(2k+λ).

Sliding Mode Control Results
The sliding mode controller was implemented using the

same input parameters as the linear controllers. |γmax| is taken
to be (3.5 N / 0.445 kg) = 7.865 N/kg. Fc = 2 N, and so |qmax| = 2
N / 0.445 kg) = 4.944 N/kg. Therefore, for a steady-state error of
0.00005 meters, or 50 microns, k =

√
(4.994+7.865)/.00005=

507.15. 50 microns was here chosen as a design parameter based
partially on the expected encoder resolution, as the expect reso-
lution is 12.5 microns.

These parameters were used in a MATLAB [16] implemen-
tation of the sliding mode controller, using the equation derived
here. The dynamics were simulated using a 4th-order Runge-
Kutta solver.

Given these quantities, h, g, and therefore U can be com-
puted, allowing the controller to be implemented. Results are
shown for a 15 mm step in Figure . The sliding mode con-
trol system has better performance than the linear system. A
slew rate-like saturation behavior can be seen, which is present
for both the sliding mode controller and the augmented linear
one. This is likely due to both tuning and the fact that the sliding
mode controller could operate at saturation in an intelligent and
robust manner, whereas linear controllers can struggle when sat-
urating. Saturation at the beginning of a transient may speed up
the response time but ultimately lead to dangerous oscillations or
overshoot, which is in this case less of a problem with the slid-
ing mode control system. The difference in the steady-state con-
trol voltage value is due to static friction. This was determined
by setting the static friction force Fc to zero and performing the
same step motions. In that case, the final steady state value for
both the linear controller with the integrator and for the sliding
mode controller were the same.

Conclusions
The sliding mode controller seems like a promising method

for controlling this nonlinear system with higher performance
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Figure 6. Sliding mode control performance for a 15 mm step vs. linear
state feedback controllers.

than is achievable with linear control designs. It is possible that
when the system is implemented on a real system that additional
disturbances like noise, along with implementation in discrete
rather than continous time, could cause chattering issues with
the sliding mode controller. Advancements that could be made
on this work would be implementing a smoothed sliding mode
control to help mitigate such issues. A further improvement to
the system would be to incorporate the output nonlinearity into
the control design. The control system, once tuned, then needs
to be integrated into a printing system, and the overall printing
system control architecture will require careful design to best
take advantage of the high performance possible with this back
pressure controller.
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